
Injection
attacks
North America large University

Use Case

Injection attacks can occur in
web applications as well as APIs.
They happen when an attacker sends
malicious input (string or data) to
a web application or API, with the
intention of changing its operation,
and the application treats this input
as legitimate and executes it as part
of a normal process flow.

This can result in unintended consequences, such as
executing malicious code or retrieving sensitive data.
The most common types of injection attacks include:

• Structured Query Language (SQL) injection

• No SQL queries

• Operating system (OS) commands

• Extensible Markup Language (XML)

• Lightweight Directory Access Protocol (LDAP)

• Object-Relational Mapping (ORM)

It’s important for developers to properly validate and
sanitize user input to prevent these types of attacks
which as mentioned are very common and why injection
attacks ‘earned’ their place on OWASP’s top 10 list of
web application security risks.

How it works
The basic idea behind an Injection attack is to inject
malicious data into an application, either as part of
a request or as input to a form. This malicious data
can then be executed by the application which results
in unintended consequences such as data disclosure,
code execution, and system compromise.

The vulnerability occurs when the application fails to
validate user input properly, allowing an attacker to inject
malicious data into the request or input. The attacker
can then use this to force the back-end system, such as
an SQL database to disclose data or execute malicious
code, despite them not having credentials to access to it.

The example here illustrates an SQL injection at a
university. An attacker sends a request to the database
server; altering it so that the server returns not the user
data but the entire database.

SQL INJECTION

WEB API SERVER

Data for all students
is returned to the

attacker

http://students.com?
studentld=117 or 1=1;--

SELECT * FROM students
WHERE studentld=117 or 1=1;

Return data for
all students

What is an
injection attack?

Case example:
top North American
university
Wib’s attack research team where
invited to evaluate API security at
a large North American university.

Objective
The objective was to identify any API vulnerabilities
within the organization with a view to introducing
necessary remedial controls.

To undertake our work, we received a comprehensive
export of JSON file documentation from the university
including all APIs known to the DevOps group. We were
also provided with access credentials for a low-privilege
user and an admin user.

What we did
During the test, our Wib code analysis and traffic
inspection engines discovered unmanaged ‘shadow’
APIs communicating with endpoints. Initially, we assumed
that the university forgot to include those APIs in its
documentation. On closer inspection, these API were not
included in the documentation, but we did notice that the
shadow APIs had a similar structure to the known APIs.
We were able to confirm that the shadow APIs were in
fact old versions of the same API that were still active and
receiving API calls. The old API versions caused endpoints
to handle the calls differently to the current API version.

We were able to insert a JavaScript code to execute
a Cross-Site Scripting (XSS) attack, which was successful
because of the lack of proper validation on user input.
This in return enabled our red team attackers to steal
the admin cookie and authenticate themselves (account
takeover); allowing them to perform actions without
the server being able to identify the legitimate user
and the attacker.

What we found
The potential impact on the company was high. We were
able to convert a low-privilege user to an admin user
in a few clicks, without detection. Admins can perform
any action in the system, potentially stealing data,
manipulating other accounts, deleting information, etc.
As well as the obvious commercial impact, the university’s
reputation would have been irrevocably tarnished and
it would face stiff penalties for breaking compliance
regulations such as GDPR and CCPA.

Develop a safe API that provides
a parameterized interface.

Special characters should be
escaped using the specific
syntax for the target interpreter.

Always limit the number of
returned records to prevent mass
disclosure in case of injection.

Define data types and
strict patterns for all string
parameters.

Validate incoming data using
sufficient filters to only allow valid
values for each input parameter.

Perform data validation using
a single, trustworthy, and actively
maintained library.

Validate, filter and sanitize
all client-provided data,
or other data coming from
integrated systems.

How to avoid
API injection attacks

The Wib
holistic approach
Wib advanced API Security Platform (‘Fusion Platform’) is comprehensive,
holistic solution for securing APIs across an organization’s entire ecosystem.
It utilizes a comprehensive, multi-lens approach, powered by Wib’s proprietary
Fusion Engine – to assess the security posture of APIs, minimize risk, and quickly
address cybersecurity incidents throughout the entire development process.
From code to testing and production – further enabling incident response and
vulnerability management via Wib Fusion Defense.

The code analysis engine maps all
endpoints, APIs, patterns, and designs
in the code by connecting to the API
repositories and inventories.
At this point, we can identify the APIs
we expect to see. The engine will identify
any endpoints unable to properly validate
the authentication tokens.

The traffic inspection engine harnesses
the code analysis data to verify and
compare. This avoids false positives
and can identify where mitigation
controls may be in place if there is
no authentication enforcement. It also
enables other potentially hidden APIs
to be inspected for similar defects

The attack simulation engine allows us
to ‘red team’ various attacks against the
endpoints and APIs. A human dimension
is critical here as there is no automated
tool capable of exploiting business logic.
Some attacks are used to eliminate false
positive feedback.

Through this approach, Wib’s Fusion Platform is uniquely
equipped to optimize defence against API logic attacks
and effective detection of potential blind spots where
traditional rule base detection will fail.

It focuses on three engines – code analysis, traffic
inspection and attack simulation – provide advanced
perspectives to better gain a holistic view of each
organization’s unique API gaps and flaws.

API Penetration Testing
as a Service (PTaaS)
APIs expose more attack surface than User
Interfaces, but most penetration testing
lacks rigorous testing of APIs by experienced
offensive API attackers.

Our industry-first API penetration testing
service is a quick and simple way to ensure
visibility, protection, and compliance by
providing full pen testing capabilities or
augmenting your existing pen testing solution
with our API-specific security expertise.

What you get:

• Full risk and vulnerability assessment of
your critical APIs (can include black, grey,
or white box testing)

• A risk severity score based on NIST cyber
matrix calculator

• Contextual remediation report for all
identified vulnerabilities

• Consultancy and remediation roadmap plan
with Wib’s security team experts

Testing tailored to PCI DSS 4.0, GDPR, CCPA, SOC-2, ISO,
NIST 800-30, HIPAA, CMA and other regulatory Frameworks

Secure. Liberate. Innovate.

